University of California, Santa Barbara

Department of Electrical and Computer Engineering
ECE 152A - Digital Design Principles
Midterm Exam \#1-Solution
July 18, 2007

Name \qquad
Perm \# \qquad
Lab Section \qquad

Problem \#1 (20 points) \qquad
Problem \#2 (20 points) \qquad
Problem \#3 (20 points) \qquad
Problem \#4 (20 points) \qquad
Problem \#5 (20 points) \qquad
Total (100 points) \qquad

- This is a 75 minute exam; closed book, closed notes, no calculators.
- Answer all questions on the exam.

Problem \#1.

For the Boolean expression given below:

$$
A\left(B+C^{\prime} D\right)+(B D)^{\prime} C
$$

a) (4 points) Using only Boolean algebra, give the equivalent expression in Sum of Products representation (you don't need to simplify the expression).

$$
A(B+C D)+(B D)^{\prime} C
$$

a) Sum or Peosucts

$$
\begin{aligned}
& A\left(B+C^{\prime} D\right)+\left(B^{\prime}+D^{\prime}\right) C \\
& A B+A C^{\prime} D+B^{\prime} C+C D^{\prime}
\end{aligned}
$$

b) (4 points) Enter the function onto a Karnaugh map and identify the prime and essential prime implicants and find a minimal cover in Sum of Products form. Is the minimal cover unique?

Perse Iupucants

$$
A D, A C, B^{\prime} C, A B, C D \prime
$$

ESSENTIAL PLuME DUPLICATE

$$
A D, B^{\prime} C, A B, C D^{\prime}
$$

minimal Cover
$A D+B^{\prime} C+A B+C D^{\prime}$
Cover is anlage pectase it Includes ONCY ESSEatint, Deme Jupuchurts
c) (4 points) Using only Boolean algebra, give the equivalent expression in Product of Sums representation (begin with the minimized Sum of Products representation determined in part b above).

$$
\begin{aligned}
& A B+A D+B^{\prime} C+C D^{\prime} \\
& (A+A D)(B+A D)+\left(B^{\prime}+C D^{\prime}\right)\left(C+C D^{\prime}\right) \\
& A(A \neq B)(B+D)+\left(B^{\prime}+C\right)\left(B^{\prime}+D^{\prime}\right) C \\
& A(B+D)+\left(B^{\prime}+D^{\prime}\right) C \\
& \left(A(B+D)+\left(B^{\prime}+D^{\prime}\right)\right)(A(B+D)+C) \\
& \left(A B+B^{\prime}+A D+D^{\prime}\right)(A+C)(B+D+C) \\
& \left(A+B^{\prime}+A+D^{\prime}\right)(A+C)(B+D+C) \\
& \left(A+B^{\prime}+D^{\prime}\right)(A+C)(B+C+D)
\end{aligned}
$$

d) (4 points) Again enter the function onto a Karnaugh map and identify the prime and essential prime implicants and a minimal cover in Product of Sums form. Is the minimal cover unique?

Penne Inpucauts
$(A+C),\left(A+B^{\prime}+D^{\prime}\right),(B+C+D)$
All ARE ESSE日tim, PRIME THUPLCHITS
Minimal cover

$$
\begin{gathered}
(A+C)\left(A+B^{\prime}+D^{\prime}\right)(B+C+D) \\
\text { IS UNIQUE }
\end{gathered}
$$

e) (2 points) Express the function in canonical sum of minterms form (use the $\sum \mathrm{m}(. .$.$) notation.$

$$
\operatorname{imm}(2,3,6,9,10,11,12,13,14,15)
$$

f) (2 points) Express the function in canonical product of Maxterms form (use the $\Pi \mathrm{M}(\ldots)$ notation.

$$
\operatorname{\pi ar}(0,1,4,5,7,8)
$$

Problem \#2.

a) The figure below illustrates the voltage transfer characteristic (V out vs. V in) for an inverter of unknown technology.

1. (4 points) What are the numeric values of VOH, VIH, VOL and VIL?

$$
\begin{aligned}
& U_{\text {OH }}=5 \mathrm{~V}, U_{\text {UL }}=O \mathrm{~V} \\
& U_{\text {It }}=3.75 \mathrm{U}, U_{\text {IL }}=3.25 \mathrm{~V}
\end{aligned}
$$

2. (4 points) What are the values of the high and low noise margins?

$$
\begin{aligned}
& N U_{H}=(5-3.75) \mathrm{V}=1.25 \mathrm{~V} \\
& N M_{L}=(3.25-0) \mathrm{V}=3.25 \mathrm{~V}
\end{aligned}
$$

b) (4 points) What function is realized by the CMOS logic circuit shown below?

c) (8 points) Design the CMOS circuit (referred to as a "compound, static gate") that realizes the function:

$A^{\prime} B^{\prime}+A^{\prime} C^{\prime}$

Your circuit should use the minimum number of transistors.
c) $A^{\prime} B^{\prime}+A^{\prime} C^{\prime}$

$$
\begin{array}{ll}
F=A^{\prime}\left(B^{\prime}+C^{\prime}\right) & \text { Pun Up Netrocke } \\
F^{\prime}=A+B C & \text { Pun Down Network }
\end{array}
$$

Problem \#3.

a) (5 points) Identify the critical path and calculate the maximum propagation delay for the circuit shown below. The maximum propagation delays for the gates are:

	tplh	tphl
Inverter	15 ns	20 ns
3 input NAND	17 ns	22 ns
4 input NAND	20 ns	25 ns

Critical Pate From si (an So) to F
THREE LEVEL OF INVERSION

$$
t_{\text {PAH }}+t_{\text {PHI }}+t_{\text {RIA }}=15+22+20=57 n s
$$

$$
0<
$$

$$
t_{\text {PM }}+t_{\text {Put }}+t_{\text {PHI }}=20+17+25=62 \mathrm{~ns}
$$

$$
\Longrightarrow
$$

$$
\eta
$$

Max Then Delay
b) (15 points) Using the maximum propagation delays from above, complete the timing diagram below. Initial conditions are $A=1, B=1, S 1=0$ and $\mathrm{S} 0=1$. Indicate all delay times on the timing diagram.

Midterm Exam \#1 Solution - Page 12 of 19

Problem \#4.

a) (16 points) In this problem, you are asked to design the combinational circuit that examines the contents of a coin box and dispenses Coke ${ }^{\circledR}$ and change. The coin box accepts nickels and dimes and dispenses a Coke ${ }^{\circledR}$ when it detects 15ϕ in the coin box and dispenses a Coke ${ }^{\circledR}$ and 5ϕ change when it detects 20ϕ. Once the product and change have been delivered, the coin box is automatically emptied.

The circuit has four inputs, D1D0 (the binary representation of the number of dimes in the coin box) and N1N0 (the number of nickels). The circuit has two outputs $\mathrm{K}\left(\right.$ Coke $\left.^{\circledR}\right)$ and C (change).

Design the circuit and implement it using only NAND gates. Assume you have the following TTL components available:

7400, quad, 2-input NAND gates
7406, hex inverters
7410, triple, 3-input NAND gates
7420, dual, 4-input NAND gates
Implement the circuit using the fewest number of IC's. Draw the schematic and indicate the components being used.

> KEY OBSERVATION IS THAT THERE CAN NEVER BE MORE THAN 204 IN THE COIN LOX... ANY INPUT >204 IS A DON'T CARE

$D 1$	$D O$	$N 1$	$N O$	K	C
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	1	0
0	1	0	0	0	0
0	1	0	1	1	0
0	1	1	0	1	1
0	1	1	1	x	x
1	0	0	0	1	1
1	0	0	1	x	x
1	0	1	0	x	x
1	0	1	1	x	x
1	1	0	0	x	x
1	1	0	1	x	x
1	1	1	0	x	x
1	1	1	1	x	x

Midterm Exam \#1 Solution - Page 15 of 19
WITTH NANS GATES:

$$
\begin{aligned}
& K=D 1+\text { NINO }+D O N O+D O N 1 \\
& C=D 1+\text { DON1 }
\end{aligned}
$$

NOTE: DI AND DONI TERUS USED IU BONT OUTPUTS

6 GATES, 2 IC'S

$$
17400,17420
$$

b) Marketing and sales has decided to raise the price of Coke ${ }^{\circledR}$ in its vending machines to 20ϕ and to allow the machines to also accept quarters. Like the earlier version of the machine, any combination of nickels, dimes and quarters will result in delivery of the product and the appropriate change.

1) (2 points) How many inputs (bits) will this new circuit require (what determines the contents of the coin box)?

THERE NEED TO PE 6 INPUTS
1 BIT - QUATRE
2 BITS - DINE
3 BITS - NICKEL (4 NICKAS NON LEQUIRED)
2) (2 points) How many different values of change (outputs) will this new circuit require?

THERE NEED TO BE 4 VALUES OF
CHANGE

$$
5 \phi, 10 \phi, 15 \phi \text { AND } 20 \phi
$$

Problem \#5.

For the logic circuit below:

a) (12 points) Give the structural (gate level) Verilog code that implements this circuit. Be sure to include all necessary declarations; the syntax doesn't have to be perfect, but all the elements must be present.

MODULE PROB_5 (F, X, Y),

$$
\begin{aligned}
& \text { OUTPUT } F \text {; } \\
& \text { INPUT } x, Y ; \\
& \text { WIRE } X, Y, F, A, B, C, X \text {; } \\
& \text { NAUT }(A, X, X) \text {; } \\
& \text { WAND }(B, Y, Y) \text {; } \\
& \text { WAND }(C, A, B) \text {; } \\
& \text { WAND }(D, X, Y) \text {; } \\
& \text { NAD }(F, C, D) \text {; } \\
& \text { ENDMODULE }
\end{aligned}
$$

b) (8 points) Using Verilog's logical operators, rewrite the Verilog code (you don't have to repeat the declarations in this part).

$$
\begin{gathered}
\text { USING THE LOGICAL OPERATORS } \\
\text { ASSIGN F }=\sim A \xi \sim B \mid A \& B ; \\
\text { OR } \\
\text { ASSIGN } F=A \sim A B ;
\end{gathered}
$$

